129 research outputs found

    Wear resistance evaluation of palm fatty acid distillate using four-ball tribotester

    Get PDF
    Petroleum reserves are declining nowadays while ironically petroleum is a major source of pollution despite many uses. Researchers are in effort to find an alternative to replace petroleum as a lubricant. One of the best replace sources for petroleum is bio-oil. In this paper, a comparative study of friction and wear was carried out using a fourball tester. In this research, Palm Fatty Acid Distillate (PFAD) and Jatropha oil, two well-known oils from the vegetable family oils were compared with Hydraulic mineral oil and commercial mineral Engine oil. All investigated oils in this study are used in industries as lubricants. PFAD is a product from refined crude palm oil. It exists as a light brown solid at room temperature and Jatropa oil is produced from the seeds of the Jatropha cruces, a plant that grows in marginal lands. For the wear test, the experimental research condition was comparing four kind of oils with ASTM condition in which the load applied was 392N. The sliding speed was 1200rpm under the lubricant temperature of 75 degree Celsius. The experiment was run for 3600 seconds. The experimental results demonstrated that the PFAD and Jatropha oils exhibited better performance in term of friction and wear compared to Hydraulic and Engine mineral oils

    Study of alternative lubricants for cold extrusion process of A1100 pure aluminum

    Get PDF
    Lubrication in metal forming process is very important to control wear and friction at the interface between interacting surfaces. Non-renewable resources, such as mineral oil are widely used since a beginning due to its ability to act as a supplier to the wearing contact which functions as a film material or sustains chemical transformation to become a film material. Since it is will not last for a few more decades, renewable resources had been studied in order to find an alternative lubricant with presents similar results in terms of extrusion load and product quality. Two renewable lubricants were analyzed (Palm Kernel and Palm Stearin) together with additive free paraffinic mineral oil VG460 will act as a comparison lubricant. The experiment used a cold work plane strain extrusion apparatus consisting of a pair of taper die and a symmetrical work piece (billet). The billet material was annealed pure aluminum A1100 with radius of 5mm at the deformation area. It was found that palm Palm Kernel and Palm Stearin performed slightly high extrusion load, however they show no severe wear on product surface. Based on the results, it is proven that renewable based lubricants can be considered as a substitute to common mineral based lubricants used in the industry

    Lattice Boltzmann simulation of plume behavior from an eccentric annulus cylinder

    Get PDF
    In this paper, a double-population thermal lattice Boltzmann was applied to solve two dimensional, incompressible, thermal fluid flow problems. The simplest lattice BGK D2Q4 model was applied to determine the temperature field while D2Q9 for the density and velocity fields. The simulation of natural convection from a concentrically and eccentrically placed inner heated cylinder inside cold outer cylinder with Prandtl number 0.71 and Rayleigh number 5 x was observed that the combination of D2Q4 and D2Q9 10 5 were carried out and discussed quantitatively. It was able to reproduce the effect of buoyancy force in the system. We also found that the flow pattern including the boundary layers and vortices with heat transfer mechanisms is significantly influenced by the position of heated cylinder in the enclosure and excellent comparisons with previous studies

    DIFFERENTIAL EVOLUTION FOR OPTIMIZATION OF PID GAIN IN ELECTRICAL DISCHARGE MACHINING CONTROL SYSTEM

    Get PDF
    ABSTRACT PID controller of servo control system maintains the gap between Electrode and workpiece in Electrical Dis- charge Machining (EDM). Capability of the controller is significant since machining process is a stochastic phenomenon and physical behaviour of the discharge is unpredictable. Therefore, a Proportional Integral Derivative (PID) controller using Differential Evolution (DE) algorithm is designed and applied to an EDM servo actuator system in order to find suitable gain parameters. Simulation results verify the capabilities and effectiveness of the DE algorithm to search the best configuration of PID gain to maintain the electrode position. Keywords: servo control system; electrical discharge machining; proportional integral derivative; con- troller tuning; differential evolution

    Measurement of coefficient of friction under bulk plastic deformation by using plane strain extrusion apparatus with plane plate tool and taper die

    Get PDF
    A series of experiment to measure coefficient of friction under bulk plastic deformation in plane strain extrusion was carried out by using the apparatus in which a taper die and a plane plate tool were arranged in facing each other. The plane plate tool had detection part of the normal and frictional forces acting on the tool surface so that coefficient of friction could be measured. Conditions of frictional constraint on the surface of plane plate tool were changed by applying the lubricant with high viscosity or lubricant with low viscosity. While, lubricant applied to the other contact surfaces with billet such as the surfaces of taper die and sidewall was fixed to one kind. Billet was made of Aluminum (A1050-JIS) and the extrusion apparatus was made of SKD-11-JIS. Then, the values of coefficient of friction were measured and surface conditions of a billet were investigated on the plane plate tool side. Differences of the conditions of material flow and effective strain in whole area of deformation zone of a billet, which were affected with different frictional constraint on the surface of plane plate, were also investigated by carrying out the visioplasticy analysis

    Tribological performance of modified jatropha oil containing oil-miscible ionic liquid, for machining applications

    Get PDF
    Modifying physicochemical and tribological properties of a bio-based lubricant is essential in improving its lubrication performances. This paper presents the effectiveness of a fully oil-miscible Ionic liquid (IL) as lubricant additive into a bio-based lubricant. Methyltrioctylammonium bis(trifluoromethylsulfonyl)imide (AIL) was selected as IL additive to improve the tribological performance of the bio- based lubricant. Additive was mixed into the bio-based lubricant at three levels of mass concentrations (1 wt.%, 5 wt.% & 10 wt.%). Tribology tests on steel/steel contacts were conducted to evaluate the lubricant samples. Test outputs were benchmarked against the neat bio-based lubricant. Results revealed good synergistic effect of the AIL additive blended into the bio-based lubricant. MJO+AIL10 % has shown good corrosion inhibition, superior friction reduction (48 %), lower worn surface area (23 %), excellent surface finish (46 %) and increased tapping torque efficiency (8 %). MJO+AIL10 % provided excellent tribological performances which corresponds to the energy saving and environmental benefit for sustainable machining applications

    The effect of fluidity of palm kernel oil with pour point depressant on coefficient of friction using fourball tribotester

    Get PDF
    The growing awareness worldwide of the need to promote the use of renewable materials such as vegetable oils is due to increasing concerns about the damage to the environment that is being caused by the use of non-biodegradable mineral oils. Vegetable oils have the potential to replace mineral oils as a lubricant because of their specific properties, namely that they are non-toxic and biodegradable. The main problem with the use of vegetable oils is that they perform poorly at low temperatures. In this research, palm kernel oil (PKO), which behaves as a semi-solid, was used as a bio-lubricant by mixing it with different weight percentages of a pour point depressant (PPD) to investigate the performance of the pour point depressant and also to determine the effect on the lubricity of the bio-lubricant when it is blended with different percentages of PPD (5 wt.%, 10 wt.%, 20 wt.% and 30 wt.%). The experiment was conducted according to ASTM D4172 and ASTM D2783. The results of the experiment showed that at low temperatures the PKO samples with 20 wt.% PPD and 30 wt.% PPD performed well, where they were able to remain in a liquid form at a temperature of 15°C. From all antiwear test result, the coefficient of friction for the PPD sample shows poor tribological performance when adding PPD into the palm kernel oil

    Determination of friction coefficient in the lubricated ring upsetting with palm kernel oil for cold forging of aluminum alloys

    Get PDF
    The growing of worldwide trend for promoting the use of the renewable material such as vegetable oil is due to the increasing concern about environmental damage that caused by the use of mineral oil which is not biodegradable. This article is present as a case study in highlighting the use of Palm Kernel Oil (PKO) as a bio lubricant in cold forging process. Ring Compression Test (RCT) plays a fundamental role in our understanding of materials science and engineering due to the deformation, friction and wear behaviour. Annealed Aluminium (AA6061) were used in this test to observe the formation of the ring with different sample test (NO-Oil, PKO and CMFOoil) at 10%, 20% 30% and 40% formation by comparing with finites element method (DEFORM-3D) to predict formation of the sample lubricants. The ring compression test conducted by this study indicates that the Tresca friction factor (m) is higher for Palm Kernel oil (0.35) compare to commercial metal forming oil (CMFO) (0.25), where higher load is needed under palm kernel oil test. Palm Kernel oil however has a better in surface protecting to the material where it shows that the roughness of the workpiece is lower compare to the CMFO, besides that the Wear scar observation also shows CMFO has a lot of wear on workpiece surface

    Influence of normal load and temperature on tribological properties of jatropha oil

    Get PDF
    This research investigated tribological properties of Jatropha oil (vegetable oil)to find clean, new, and renewable lubricant source of industrial applications. The study was performed utilizing a fourball tribotester, CCD camera, scanning electron microscope (SEM)and viscometer. The experiment was conducted using different normal loads (300, 400, and 500 N) and temperatures (75, 95 and 105°C). The test was followed ASTM D4172 standard. The evaluation was focused on the viscosity, flash temperature parameter, coefficient of friction, wear scar diameter and worn surface observation. All results of Jatropha oil were compared with mineral hydraulic oil to evaluate the lubricity performance of Jatropha oil. The results indicated that the Jatropha had better anti-friction and anti-wear ability than hydraulic mineral oil under various temperature and loads. In conclusion, Jatropha oil has bright possibility to be produced as commercial industrial lubrican
    corecore